常函數是周期函數,只是沒有最小正周期。對于函數y=f(x),如果存在一個不為零的常數T,使得當x取定義域內的每一個值時,f(x+T)=f(x)都成立,那么就把函數y=f(x)叫做周期函數。
由定義可得:周期函數f(x)的周期T是與x無關的非零常數,且周期函數不一定有最小正周期,譬如狄利克雷函數。
周期函數的性質共分以下幾個類型:
(1)若T(≠0)是f(x)的周期,則-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,則nT(n為任意非零整數)也是f(x)的周期。
(3)若T1與T2都是f(x)的周期,則T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T,那么f(x)的任何正周期T一定是T的正整數倍。
(5)若T1、T2是f(x)的兩個周期,且T1/T2是無理數,則f(x)不存在最小正周期。
(6)周期函數f(x)的定義域M必定是至少一方無界的集合。
dna水解后得到的產物是什么
時間:2023-09-16 21:0:39invention可數嗎
時間:2023-09-13 09:0:04地球大氣層從低到高依次是
時間:2023-09-18 07:0:54宇文新州之懿范句式
時間:2023-09-21 15:0:08