可積不一定是連續的,可積函數不一定連續,連續函數一定可積。連續是比可積更苛刻的條件,要判斷一個函數是否連續,還是要通過定義來判斷,并非在可積的基礎上單加什么條件就可以判斷,如果非要在可積的基礎上加條件,和其他函數所滿足的條件是一樣的,還是根據定義。
數學上,可積函數是存在積分的函數。除非特別指明,一般積分是指勒貝格積分;否則,稱函數為"黎曼可積"(也即黎曼積分存在),或者"Henstock-Kurzweil可積",等等。
黎曼積分在應用領域取得了巨大的成功,但是黎曼積分的應用范圍因為其定義的局限而受到限制;勒貝格積分是在勒貝格測度理論的基礎上建立起來的,函數可以定義在更一般的點集上,更重要的是它提供了比黎曼積分更廣泛有效的收斂定理,因此,勒貝格積分的應用領域更加廣泛。
連續函數是指函數y=f(x)當自變量x的變化很小時,所引起的因變量y的變化也很小。例如,氣溫隨時間變化,只要時間變化很小,氣溫的變化也是很小的;又如,自由落體的位移隨時間變化,只要時間變化足夠短,位移的變化也是很小的。
對于這種現象,因變量關于自變量是連續變化的,連續函數在直角坐標系中的圖像是一條沒有斷裂的連續曲線。由極限的性質可知,一個函數在某點連續的充要條件是它在該點左右都連續。
dna水解后得到的產物是什么
時間:2023-09-16 21:0:39invention可數嗎
時間:2023-09-13 09:0:04地球大氣層從低到高依次是
時間:2023-09-18 07:0:54宇文新州之懿范句式
時間:2023-09-21 15:0:08